Compare commits
No commits in common. "main" and "master" have entirely different histories.
7 changed files with 622 additions and 3 deletions
145
.gitignore
vendored
Normal file
145
.gitignore
vendored
Normal file
|
@ -0,0 +1,145 @@
|
|||
data
|
||||
data.zip
|
||||
*.kate-swp
|
||||
tags.json
|
||||
|
||||
# ---> Python
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
cover/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
# For a library or package, you might want to ignore these files since the code is
|
||||
# intended to run in multiple environments; otherwise, check them in:
|
||||
# .python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
11
README.md
11
README.md
|
@ -1,4 +1,9 @@
|
|||
# p-adic-numbers
|
||||
|
||||
# p-adic-numbers
|
||||
|
||||
class for p-adic number fields
|
||||
fork from https://github.com/meagtan/p-adic-numbers
|
||||
fork from https://github.com/meagtan/p-adic-numbers
|
||||
|
||||
Thank you meagtan. He told me by mail, that I can release this project as GPL3+.
|
||||
|
||||
This repository is hosted and maintained on https://git.jdmweb2.ch/beat/p-adic-numbers
|
||||
If you have questions feel free to send me an Email. My address is in the commits.
|
||||
|
|
42
hensel.py
Normal file
42
hensel.py
Normal file
|
@ -0,0 +1,42 @@
|
|||
# Finding roots of polynomials in p-adic integers using Hensel's lemma
|
||||
|
||||
from padic import *
|
||||
from poly import *
|
||||
|
||||
def roots(p, poly):
|
||||
'Yield all roots of polynomial in the given p-adic integers.'
|
||||
for root in xrange(p):
|
||||
try:
|
||||
yield PAdicPoly(p, poly, root)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
class PAdicPoly(PAdic):
|
||||
'Result of lifting a root of a polynomial in the integers mod p to the p-adic integers.'
|
||||
def __init__(self, p, poly, root):
|
||||
PAdic.__init__(self, p)
|
||||
self.root = root
|
||||
self.poly = poly
|
||||
self.deriv = derivative(poly)
|
||||
|
||||
# argument checks for the algorithm to work
|
||||
if poly(root) % p:
|
||||
raise ValueError("%d is not a root of %s modulo %d" % (root, poly, p))
|
||||
if self.deriv(root) % p == 0:
|
||||
raise ValueError("Polynomial %s is not separable modulo %d" % (poly, p))
|
||||
|
||||
# take care of trailing zeros
|
||||
digit = self.root
|
||||
self.val = str(digit)
|
||||
self.exp = self.p
|
||||
while digit == 0:
|
||||
self.order += 1
|
||||
digit = self._nextdigit()
|
||||
# self.prec += 1
|
||||
|
||||
def _nextdigit(self):
|
||||
self.root = ModP(self.exp * self.p, self.root)
|
||||
self.root = self.root - self.poly(self.root) / self.deriv(self.root) # coercions automatically taken care of
|
||||
digit = self.root // self.exp
|
||||
self.exp *= self.p
|
||||
return digit
|
50
modp.py
Normal file
50
modp.py
Normal file
|
@ -0,0 +1,50 @@
|
|||
class ModP(int):
|
||||
'Integers mod p, p a prime power.'
|
||||
def __new__(cls, p, num):
|
||||
self = int.__new__(cls, int(num) % p)
|
||||
self.p = p
|
||||
return self
|
||||
|
||||
def __str__(self):
|
||||
return "%d (mod %d)" % (self, self.p)
|
||||
def __repr__(self):
|
||||
return "%d %% %d" % (self, self.p)
|
||||
|
||||
# arithmetic
|
||||
def __neg__(self):
|
||||
return ModP(self.p, self.p - int(self))
|
||||
def __add__(self, other):
|
||||
return ModP(self.p, int(self) + int(other))
|
||||
def __radd__(self, other):
|
||||
return ModP(self.p, int(other) + int(self))
|
||||
def __sub__(self, other):
|
||||
return ModP(self.p, int(self) - int(other))
|
||||
def __rsub__(self, other):
|
||||
return ModP(self.p, int(other) - int(self))
|
||||
def __mul__(self, other):
|
||||
return ModP(self.p, int(self) * int(other))
|
||||
def __rmul__(self, other):
|
||||
return ModP(self.p, int(other) * int(self))
|
||||
def __div__(self, other):
|
||||
if not isinstance(other, ModP):
|
||||
other = ModP(self.p, other)
|
||||
return self * other._inv()
|
||||
def __rdiv__(self, other):
|
||||
return other * self._inv()
|
||||
|
||||
def _inv(self):
|
||||
'Find multiplicative inverse of self in Z mod p.'
|
||||
# extended Euclidean algorithm
|
||||
rcurr = self.p
|
||||
rnext = int(self)
|
||||
tcurr = 0
|
||||
tnext = 1
|
||||
|
||||
while rnext:
|
||||
q = rcurr // rnext
|
||||
rcurr, rnext = rnext, rcurr - q * rnext
|
||||
tcurr, tnext = tnext, tcurr - q * tnext
|
||||
|
||||
if rcurr != 1:
|
||||
raise ValueError("%d not a unit modulo %d" % (self, self.p))
|
||||
return ModP(self.p, tcurr)
|
271
padic.py
Normal file
271
padic.py
Normal file
|
@ -0,0 +1,271 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: UTF-8 -*-
|
||||
#
|
||||
# License: GLP3+
|
||||
# Copyright 2017 meagtan
|
||||
# Copyright 2022 Beat Jäckle <beat@git.jdmweb2.ch>
|
||||
|
||||
|
||||
from fractions import Fraction
|
||||
from sys import maxsize
|
||||
from modp import ModP
|
||||
|
||||
|
||||
class PAdic:
|
||||
def __init__(self, p, printInvers=False):
|
||||
self.p = p
|
||||
|
||||
# current known value
|
||||
self.digitP = [] # digitP[0]=c_0; digitP[i]=c_i
|
||||
self.digitN = [] # digitN[0]=c_-1; digitN[i]=c_-1-i
|
||||
self.prec = 0 # current known precision, not containing trailing zeros
|
||||
|
||||
self.order = 0 # order/valuation of number
|
||||
self.printInvers = printInvers
|
||||
return None
|
||||
|
||||
def calc(self, prec):
|
||||
# First calculation
|
||||
if len(self.digitN) + len(self.digitP) == 0:
|
||||
if self.value == 0:
|
||||
self.zero = True
|
||||
self.digitP = [0]
|
||||
return None
|
||||
if self.order < 0:
|
||||
absorder = abs(self.order)
|
||||
self.digitN = [None]*absorder
|
||||
for i in range(absorder):
|
||||
self.digitN[absorder-i-1] = self._nextdigit()
|
||||
if absorder >= prec:
|
||||
self.prec = absorder
|
||||
self.digitP.append(self._nextdigit())
|
||||
elif self.order > 0:
|
||||
self.digitP = [0]*self.order
|
||||
while len(self.digitN) + len(self.digitP) < prec:
|
||||
if self.value == 0:
|
||||
break
|
||||
self.digitP.append(self._nextdigit())
|
||||
return None
|
||||
|
||||
def get(self, prec, decimal=True):
|
||||
self.calc(prec)
|
||||
'Return value of number with given precision.'
|
||||
s = ''
|
||||
for d in self.digitP[::-1]:
|
||||
s += str(d)
|
||||
if self.digitN:
|
||||
if decimal:
|
||||
s += '.'
|
||||
for d in self.digitN:
|
||||
s += str(d)
|
||||
return s
|
||||
|
||||
def _nextdigit(self):
|
||||
'Calculate next digit of p-adic number.'
|
||||
raise NotImplementedError
|
||||
|
||||
def getdigit(self, index):
|
||||
if index < self.order:
|
||||
# print('not relevant 0')
|
||||
return 0
|
||||
|
||||
# be sure to calculate the digits
|
||||
prec = index+1
|
||||
if self.order < 0:
|
||||
prec += abs(self.order)
|
||||
self.calc(prec)
|
||||
|
||||
# negative index
|
||||
if index < 0:
|
||||
try:
|
||||
return self.digitN[abs(index)-1]
|
||||
except IndexError:
|
||||
print('Should not happen', index)
|
||||
print('__dict__', self.__dict__())
|
||||
raise IndexError(
|
||||
f"Digit not Found\n"
|
||||
f"index: {index}\n"
|
||||
f"dict: {self.__dict__()}"
|
||||
)
|
||||
|
||||
# positive index
|
||||
else:
|
||||
try:
|
||||
return self.digitP[index]
|
||||
except IndexError:
|
||||
if self.value == 0:
|
||||
# print('not significant',0)
|
||||
return 0
|
||||
else:
|
||||
print('Logical Error')
|
||||
print(f'Index = {index}')
|
||||
print(f'pAdic = {self.__dict__()}')
|
||||
raise ValueError('Logical Error')
|
||||
|
||||
# return value with precision up to 32 bits
|
||||
def __int__(self):
|
||||
return int(self.get(32), self.p)
|
||||
|
||||
def __getitem__(self, index):
|
||||
return self.getdigit(index)
|
||||
|
||||
def __str__(self):
|
||||
if self.printInvers:
|
||||
return self.get(32)[::-1]
|
||||
return self.get(32)
|
||||
|
||||
def __repr__(self):
|
||||
return str(self)
|
||||
|
||||
# arithmetic operations
|
||||
def __neg__(self):
|
||||
return PAdicNeg(self.p, self)
|
||||
|
||||
def __add__(self, other):
|
||||
return PAdicAdd(self.p, self, other)
|
||||
|
||||
def __radd__(self, other):
|
||||
return PAdicAdd(self.p, other, self)
|
||||
|
||||
def __sub__(self, other):
|
||||
return PAdicAdd(self.p, self, PAdicNeg(self.p, other))
|
||||
|
||||
def __rsub__(self, other):
|
||||
return PAdicAdd(self.p, other, PAdicNeg(self.p, self))
|
||||
|
||||
def __mul__(self, other):
|
||||
return PAdicMul(self.p, self, other)
|
||||
|
||||
def __rmul__(self, other):
|
||||
return PAdicMul(self.p, other, self)
|
||||
|
||||
# p-adic norm
|
||||
def __abs__(self):
|
||||
if self.order == maxsize:
|
||||
return 0
|
||||
numer = denom = 1
|
||||
if self.order > 0:
|
||||
numer = self.p ** self.order
|
||||
if self.order < 0:
|
||||
denom = self.p ** self.order
|
||||
return Fraction(numer, denom)
|
||||
|
||||
# determines the p-value of an p-adic number
|
||||
def pValue(self):
|
||||
return self.order
|
||||
|
||||
def fractionvalue(self):
|
||||
self.calc(1)
|
||||
s = Fraction(0)
|
||||
for (i, d) in enumerate([self.digitP[0]]+self.digitN):
|
||||
s += Fraction(d, self.p**i)
|
||||
return s
|
||||
|
||||
def getOffset(self):
|
||||
if self.order >= 0:
|
||||
return 0
|
||||
else:
|
||||
return -self.order
|
||||
|
||||
|
||||
class PAdicConst(PAdic):
|
||||
def __init__(self, p, value, printInvers=False):
|
||||
super().__init__(p, printInvers)
|
||||
value = Fraction(value)
|
||||
|
||||
# calculate valuation
|
||||
if value == 0:
|
||||
self.value = value
|
||||
self.order = float('inf')
|
||||
self.zero = True
|
||||
return None
|
||||
|
||||
while not value.numerator % self.p:
|
||||
self.order += 1
|
||||
value /= self.p
|
||||
while not value.denominator % self.p:
|
||||
self.order -= 1
|
||||
value *= self.p
|
||||
self.value = value
|
||||
return None
|
||||
|
||||
def get(self, prec, decimal=True):
|
||||
if self.zero:
|
||||
return '0' * prec
|
||||
return PAdic.get(self, prec, decimal)
|
||||
|
||||
def _nextdigit(self):
|
||||
'Calculate next digit of p-adic number.'
|
||||
rem = int(
|
||||
ModP(self.p, self.value.numerator) *
|
||||
ModP(self.p, self.value.denominator)._inv()
|
||||
)
|
||||
self.value -= rem
|
||||
self.value /= self.p
|
||||
return rem
|
||||
|
||||
|
||||
class PAdicAdd(PAdic):
|
||||
'Sum of two p-adic numbers.'
|
||||
def __init__(self, p, arg1, arg2, printInvers=False):
|
||||
super.__init__(self, p, printInvers)
|
||||
self.carry = 0
|
||||
_nextdigitCache = []
|
||||
self.arg1 = arg1
|
||||
self.arg2 = arg2
|
||||
# might be larger than this
|
||||
self.order = self.prec = min(arg1.order, arg2.order)
|
||||
arg1.order -= self.order
|
||||
arg2.order -= self.order
|
||||
# loop until first nonzero digit is found
|
||||
self.index = self.order
|
||||
digit = self._nextdigit()
|
||||
while digit == 0:
|
||||
self.index += 1
|
||||
digit = self._nextdigit()
|
||||
self.order = self.index
|
||||
_nextdigitCache.append(digit)
|
||||
|
||||
def _nextdigit(self):
|
||||
if _nextdigitCache:
|
||||
return _nextdigitCache.pop()
|
||||
s = self.arg1.getdigit(self.index) + \
|
||||
self.arg2.getdigit(self.index) + self.carry
|
||||
self.carry = s // self.p
|
||||
self.index += 1
|
||||
return s % self.p
|
||||
|
||||
|
||||
class PAdicNeg(PAdic):
|
||||
'Negation of a p-adic number.'
|
||||
def __init__(self, p, arg, printInvers=False):
|
||||
super.__init__(self, p, printInvers)
|
||||
self.arg = arg
|
||||
self.order = arg.order
|
||||
|
||||
def _nextdigit(self):
|
||||
if self.prec == 0:
|
||||
# cannot be p, 0th digit of arg must be nonzero
|
||||
return self.p - self.arg.getdigit(0 - self.getOffset())
|
||||
return self.p - 1 - self.arg.getdigit(self.prec - self.getOffset())
|
||||
|
||||
|
||||
class PAdicMul(PAdic):
|
||||
'Product of two p-adic numbers.'
|
||||
def __init__(self, p, arg1, arg2):
|
||||
PAdic.__init__(self, p)
|
||||
self.carry = 0
|
||||
self.arg1 = arg1
|
||||
self.arg2 = arg2
|
||||
self.order = arg1.order + arg2.order
|
||||
self.arg1.order = self.arg2.order = 0 # TODO requires copy
|
||||
self.index = 0
|
||||
|
||||
def _nextdigit(self):
|
||||
s = sum(
|
||||
self.arg1.getdigit(i) * self.arg2.getdigit(self.index - i)
|
||||
for i in xrange(self.index + 1)
|
||||
) + self.carry
|
||||
self.carry = s // self.p
|
||||
self.index += 1
|
||||
return s % self.p
|
80
poly.py
Normal file
80
poly.py
Normal file
|
@ -0,0 +1,80 @@
|
|||
# Polynomial class on Z or Z_p
|
||||
|
||||
from collections import defaultdict
|
||||
|
||||
class Poly:
|
||||
'Polynomial class.'
|
||||
def __init__(self, coeffs = None):
|
||||
self.coeffs = defaultdict(int, isinstance(coeffs, int) and {0:coeffs} or coeffs or {})
|
||||
self.deg = int(len(self.coeffs) and max(self.coeffs.keys()))
|
||||
|
||||
def __call__(self, val):
|
||||
'Evaluate polynomial for a given value.'
|
||||
res = 0
|
||||
for i in xrange(self.deg, -1, -1):
|
||||
res = res * val + self.coeffs[i]
|
||||
return res
|
||||
|
||||
def __str__(self):
|
||||
def term(coeff, expt):
|
||||
if coeff == 1 and expt == 0:
|
||||
return '1'
|
||||
return ' * '.join(([] if coeff == 1 else [str(coeff)]) + \
|
||||
([] if expt == 0 else ['X'] if expt == 1 else ['X ** %d' % expt]))
|
||||
|
||||
return ' + '.join(term(self.coeffs[i], i) for i in self.coeffs if self.coeffs[i] != 0)
|
||||
def __repr__(self):
|
||||
return str(self)
|
||||
|
||||
# arithmetic
|
||||
def __neg__(self):
|
||||
return Poly({(i, -self.coeffs[i]) for i in self.coeffs})
|
||||
def __add__(self, other):
|
||||
if not isinstance(other, Poly):
|
||||
other = Poly(other)
|
||||
res = Poly()
|
||||
res.deg = max(self.deg, other.deg)
|
||||
for i in xrange(res.deg+1):
|
||||
res.coeffs[i] = self.coeffs[i] + other.coeffs[i]
|
||||
return res
|
||||
def __radd__(self, other):
|
||||
if not isinstance(other, Poly):
|
||||
other = Poly(other)
|
||||
return other.__add__(self)
|
||||
def __sub__(self, other):
|
||||
if not isinstance(other, Poly):
|
||||
other = Poly(other)
|
||||
return self.__add__(other.__neg__())
|
||||
def __rsub__(self, other):
|
||||
if not isinstance(other, Poly):
|
||||
other = Poly(other)
|
||||
return other.__add__(self.__neg__())
|
||||
|
||||
def __mul__(self, other):
|
||||
if not isinstance(other, Poly):
|
||||
other = Poly(other)
|
||||
res = Poly()
|
||||
res.deg = self.deg + other.deg # consider case where other is 0
|
||||
for i in xrange(res.deg+1):
|
||||
for j in xrange(i+1):
|
||||
res.coeffs[i] += self.coeffs[j] * other.coeffs[i - j]
|
||||
return res
|
||||
def __rmul__(self, other):
|
||||
if not isinstance(other, Poly):
|
||||
other = Poly(other)
|
||||
return other.__mul__(self)
|
||||
|
||||
def __pow__(self, other):
|
||||
if not isinstance(other, int) or other < 0:
|
||||
raise ValueError("Exponent %d is not a natural number" % other)
|
||||
res = Poly(1)
|
||||
while other:
|
||||
res *= self
|
||||
other -= 1
|
||||
return res
|
||||
|
||||
X = Poly({1:1})
|
||||
|
||||
def derivative(p):
|
||||
'Return derivative of polynomial.'
|
||||
return Poly({(i - 1, i * p.coeffs[i]) for i in p.coeffs if i != 0})
|
26
pyproject.toml
Normal file
26
pyproject.toml
Normal file
|
@ -0,0 +1,26 @@
|
|||
[build-system]
|
||||
requires = ["setuptools >= 58.0"]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "padic"
|
||||
version = "0.0.2"
|
||||
authors = [
|
||||
{ name="Beat Jäckle", email="beat@git.jdmweb2.ch" },
|
||||
]
|
||||
description = "class for p-adic number fields"
|
||||
readme = "README.md"
|
||||
license = { file="LICENSE" }
|
||||
requires-python = ">=3.7"
|
||||
classifiers = [
|
||||
"Programming Language :: Python :: 3",
|
||||
"License :: OSI Approved :: GPL3",
|
||||
"Operating System :: OS Independent",
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
"Homepage" = "https://git.jdmweb2.ch/beat/p-adic-numbers"
|
||||
"Bug Tracker" = "https://git.jdmweb2.ch/beat/p-adic-numbers/issues"
|
||||
|
||||
[tool.setuptools]
|
||||
py-modules = ['hensel', 'modp', 'poly', 'padic']
|
Loading…
Reference in a new issue