#!/usr/bin/env python3 # -*- coding: UTF-8 -*- # # License: GLP3+ # Copyright 2017 meagtan # Copyright 2022 Beat Jäckle from fractions import Fraction from sys import maxsize from modp import ModP class PAdic: def __init__(self, p, printInvers=False): self.p = p # current known value self.digitP = [] # digitP[0]=c_0; digitP[i]=c_i self.digitN = [] # digitN[0]=c_-1; digitN[i]=c_-1-i self.prec = 0 # current known precision, not containing trailing zeros self.order = 0 # order/valuation of number self.printInvers = printInvers return None def calc(self, prec): # First calculation if len(self.digitN) + len(self.digitP) == 0: if self.value == 0: self.zero = True self.digitP = [0] return None if self.order < 0: absorder = abs(self.order) self.digitN = [None]*absorder for i in range(absorder): self.digitN[absorder-i-1] = self._nextdigit() if absorder >= prec: self.prec = absorder self.digitP.append(self._nextdigit()) elif self.order > 0: self.digitP = [0]*self.order while len(self.digitN) + len(self.digitP) < prec: if self.value == 0: break self.digitP.append(self._nextdigit()) return None def get(self, prec, decimal=True): self.calc(prec) 'Return value of number with given precision.' s = '' for d in self.digitP[::-1]: s += str(d) if self.digitN: if decimal: s += '.' for d in self.digitN: s += str(d) return s def _nextdigit(self): 'Calculate next digit of p-adic number.' raise NotImplementedError def getdigit(self, index): if index < self.order: # print('not relevant 0') return 0 # be sure to calculate the digits prec = index+1 if self.order < 0: prec += abs(self.order) self.calc(prec) # negative index if index < 0: try: return self.digitN[abs(index)-1] except IndexError: print('Should not happen', index) print('__dict__', self.__dict__()) raise IndexError( f"Digit not Found\n" f"index: {index}\n" f"dict: {self.__dict__()}" ) # positive index else: try: return self.digitP[index] except IndexError: if self.value == 0: # print('not significant',0) return 0 else: print('Logical Error') print(f'Index = {index}') print(f'pAdic = {self.__dict__()}') raise ValueError('Logical Error') # return value with precision up to 32 bits def __int__(self): return int(self.get(32), self.p) def __getitem__(self, index): return self.getdigit(index) def __str__(self): if self.printInvers: return self.get(32)[::-1] return self.get(32) def __repr__(self): return str(self) # arithmetic operations def __neg__(self): return PAdicNeg(self.p, self) def __add__(self, other): return PAdicAdd(self.p, self, other) def __radd__(self, other): return PAdicAdd(self.p, other, self) def __sub__(self, other): return PAdicAdd(self.p, self, PAdicNeg(self.p, other)) def __rsub__(self, other): return PAdicAdd(self.p, other, PAdicNeg(self.p, self)) def __mul__(self, other): return PAdicMul(self.p, self, other) def __rmul__(self, other): return PAdicMul(self.p, other, self) # p-adic norm def __abs__(self): if self.order == maxsize: return 0 numer = denom = 1 if self.order > 0: numer = self.p ** self.order if self.order < 0: denom = self.p ** self.order return Fraction(numer, denom) # determines the p-value of an p-adic number def pValue(self): return self.order def fractionvalue(self): self.calc(1) s = Fraction(0) for (i, d) in enumerate([self.digitP[0]]+self.digitN): s += Fraction(d, self.p**i) return s def getOffset(self): if self.order >= 0: return 0 else: return -self.order class PAdicConst(PAdic): def __init__(self, p, value, printInvers=False): super().__init__(p, printInvers) value = Fraction(value) # calculate valuation if value == 0: self.value = value self.order = float('inf') self.zero = True return None while not value.numerator % self.p: self.order += 1 value /= self.p while not value.denominator % self.p: self.order -= 1 value *= self.p self.value = value return None def get(self, prec, decimal=True): if self.zero: return '0' * prec return PAdic.get(self, prec, decimal) def _nextdigit(self): 'Calculate next digit of p-adic number.' rem = int( ModP(self.p, self.value.numerator) * ModP(self.p, self.value.denominator)._inv() ) self.value -= rem self.value /= self.p return rem class PAdicAdd(PAdic): 'Sum of two p-adic numbers.' def __init__(self, p, arg1, arg2, printInvers=False): super.__init__(self, p, printInvers) self.carry = 0 _nextdigitCache = [] self.arg1 = arg1 self.arg2 = arg2 # might be larger than this self.order = self.prec = min(arg1.order, arg2.order) arg1.order -= self.order arg2.order -= self.order # loop until first nonzero digit is found self.index = self.order digit = self._nextdigit() while digit == 0: self.index += 1 digit = self._nextdigit() self.order = self.index _nextdigitCache.append(digit) def _nextdigit(self): if _nextdigitCache: return _nextdigitCache.pop() s = self.arg1.getdigit(self.index) + \ self.arg2.getdigit(self.index) + self.carry self.carry = s // self.p self.index += 1 return s % self.p class PAdicNeg(PAdic): 'Negation of a p-adic number.' def __init__(self, p, arg, printInvers=False): super.__init__(self, p, printInvers) self.arg = arg self.order = arg.order def _nextdigit(self): if self.prec == 0: # cannot be p, 0th digit of arg must be nonzero return self.p - self.arg.getdigit(0 - self.getOffset()) return self.p - 1 - self.arg.getdigit(self.prec - self.getOffset()) class PAdicMul(PAdic): 'Product of two p-adic numbers.' def __init__(self, p, arg1, arg2): PAdic.__init__(self, p) self.carry = 0 self.arg1 = arg1 self.arg2 = arg2 self.order = arg1.order + arg2.order self.arg1.order = self.arg2.order = 0 # TODO requires copy self.index = 0 def _nextdigit(self): s = sum( self.arg1.getdigit(i) * self.arg2.getdigit(self.index - i) for i in xrange(self.index + 1) ) + self.carry self.carry = s // self.p self.index += 1 return s % self.p