class ModP(int): 'Integers mod p, p a prime power.' def __new__(cls, p, num): self = int.__new__(cls, int(num) % p) self.p = p return self def __str__(self): return "%d (mod %d)" % (self, self.p) def __repr__(self): return "%d %% %d" % (self, self.p) # arithmetic def __add__(self, other): return ModP(self.p, int(self) + int(other)) def __radd__(self, other): return ModP(self.p, int(other) + int(self)) def __sub__(self, other): return ModP(self.p, int(self) - int(other)) def __rsub__(self, other): return ModP(self.p, int(other) - int(self)) def __mul__(self, other): return ModP(self.p, int(self) * int(other)) def __rmul__(self, other): return ModP(self.p, int(other) * int(self)) def __div__(self, other): if not isinstance(other, ModP): other = ModP(self.p, other) return self * other._inv() def __rdiv__(self, other): return other * self._inv() def _inv(self): 'Find multiplicative inverse of self in Z mod p.' # extended Euclidean algorithm rcurr = self.p rnext = int(self) tcurr = 0 tnext = 1 while rnext: q = rcurr // rnext rcurr, rnext = rnext, rcurr - q * rnext tcurr, tnext = tnext, tcurr - q * tnext if rcurr != 1: raise ValueError("%d not a unit modulo %d" % (self, self.p)) return ModP(self.p, tcurr)