p-adic-numbers/poly.py
2017-05-15 11:26:12 +03:00

80 lines
No EOL
2.6 KiB
Python

# Polynomial class on Z or Z_p
from collections import defaultdict
class Poly:
'Polynomial class.'
def __init__(self, coeffs = None):
self.coeffs = defaultdict(int, isinstance(coeffs, int) and {0:coeffs} or coeffs or {})
self.deg = int(len(self.coeffs) and max(self.coeffs.keys()))
def __call__(self, val):
'Evaluate polynomial for a given value.'
res = 0
for i in xrange(self.deg, -1, -1):
res = res * val + self.coeffs[i]
return res
def __str__(self):
def term(coeff, expt):
if coeff == 1 and expt == 0:
return '1'
return ' * '.join(([] if coeff == 1 else [str(coeff)]) + \
([] if expt == 0 else ['X'] if expt == 1 else ['X ** %d' % expt]))
return ' + '.join(term(self.coeffs[i], i) for i in self.coeffs if self.coeffs[i] != 0)
def __repr__(self):
return str(self)
# arithmetic
def __neg__(self):
return Poly({(i, -self.coeffs[i]) for i in self.coeffs})
def __add__(self, other):
if not isinstance(other, Poly):
other = Poly(other)
res = Poly()
res.deg = max(self.deg, other.deg)
for i in xrange(res.deg+1):
res.coeffs[i] = self.coeffs[i] + other.coeffs[i]
return res
def __radd__(self, other):
if not isinstance(other, Poly):
other = Poly(other)
return other.__add__(self)
def __sub__(self, other):
if not isinstance(other, Poly):
other = Poly(other)
return self.__add__(other.__neg__())
def __rsub__(self, other):
if not isinstance(other, Poly):
other = Poly(other)
return other.__add__(self.__neg__())
def __mul__(self, other):
if not isinstance(other, Poly):
other = Poly(other)
res = Poly()
res.deg = self.deg + other.deg # consider case where other is 0
for i in xrange(res.deg+1):
for j in xrange(i+1):
res.coeffs[i] += self.coeffs[j] * other.coeffs[i - j]
return res
def __rmul__(self, other):
if not isinstance(other, Poly):
other = Poly(other)
return other.__mul__(self)
def __pow__(self, other):
if not isinstance(other, int) or other < 0:
raise ValueError("Exponent %d is not a natural number" % other)
res = Poly(1)
while other:
res *= self
other -= 1
return res
X = Poly({1:1})
def derivative(p):
'Return derivative of polynomial.'
return Poly({(i - 1, i * p.coeffs[i]) for i in p.coeffs if i != 0})